Reconstruction of the (001) surface of TiO2 nanosheets induced by the fluorine-surfactant removal process under UV-irradiation for dye-sensitized solar cells.
نویسندگان
چکیده
The champion dye-sensitized solar cells (DSSCs) based on TiO(2) nanoparticles nearly reach the limit of photo-current density using the black dye or zinc porphyrin dye as sensitizer. However, the way to make ordinary DSSCs more efficient as well as to understand the mechanism is still essential. Here we present an elegant UV irradiation treatment of TiO(2) nanosheets to enhance the performance of DSSCs based on the TiO(2) nanosheets via room temperature removal of inorganic surfactants and reconstruction of the (001) surface of TiO(2) nanosheets, killing two birds with one stone. UV irradiation was utilized to remove the fluorine-surfactant on the surface of anatase TiO(2) nanosheets with a high percentage of exposed {001} facets which were synthesized with the aid of hydrofluoric acid. The nanosheets treated with UV irradiation for 40 min had the advantage of improving the photoelectric conversion efficiency of DSSCs by 17.6%, compared to that without UV treatment when they were introduced into DSSCs as photoanode materials. The improved efficiency was ascribed to more dye adsorption. A theoretical calculation proposed that UV irradiation induced microfaceted steps on the TiO(2) surface by two domain (1 × 4) reconstruction after UV irradiating the (1 × 1) (001) surface. The microfaceted steps increase the active surface area of the TiO(2) nanosheets by increasing the exposure of titanium atoms and engendering active sites.
منابع مشابه
Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.
A TiO2 film photoanode with gradient structure in nanosheet/nanoparticle concentration on the fluorine-doped tin oxide glass from substrate to surface was prepared by a screen printing method. The as-prepared dye-sensitized solar cell (DSSC) based on the gradient film electrode exhibited an enhanced photoelectric conversion efficiency of 6.48%, exceeding that of a pure nanoparticle-based DSSC w...
متن کاملOptimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method
The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...
متن کاملOptimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method
The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...
متن کاملInfluence of TiO2 layer thickness as photoanode in Dye Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) are categorized as some of inexpensive thin-film solar cells. The basis and foundation of these cells is a semiconductor that consists of an electrolyte and a light-sensitive anode. Titanium dioxide (TiO2) is a semiconductor that plays the role of anode and is the main constituent of these cells. In this paper, we have addressed the functionality and performan...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 14 شماره
صفحات -
تاریخ انتشار 2012